The Frank-Kamenetskii Problem

Requires a Wolfram Notebook System
Interact on desktop, mobile and cloud with the free Wolfram Player or other Wolfram Language products.
The Frank–Kamenetskii problem relates to the self-heating of a reactive solid. When the heat generated by reaction is balanced by conduction in a one-dimensional slab of combustible material, the nonlinear boundary value problem (BVP) for
, and
admits two steady solutions. Here,
is the dimensionless temperature. The BVP admits an analytical solution given by
, where
is one of the two solutions of the nonlinear equation
(i.e.,
and
). The two analytical solutions are indicated by the blue and magenta curves. The dots represent the numerical solutions obtained using the Chebyshev collocation method. You can change the number of collocation points. You can clearly see that the analytical and numerical solutions are in agreement.
Contributed by: Housam Binous, Brian G. Higgins, Abdullah A. Shaikh, and Ahmed Bellagi (May 2013)
Open content licensed under CC BY-NC-SA
Snapshots
Details
In the discrete Chebyshev–Gauss–Lobatto case, the interior points are given by , at the
collocation points. These points are extremums of the Chebyshev polynomial of the first kind
.
The Chebyshev derivative matrix at the quadrature points
,
,
is given by
,
,
for
, and
for
,
, and
,
where for
and
.
The matrix is then used as follows:
and
, where
is a vector formed by evaluating
at
,
, and
and
are the approximations of
and
at the
.
Reference
[1] P. Moin, Fundamentals of Engineering Numerical Analysis, Cambridge, UK: Cambridge University Press, 2001.
Permanent Citation