# Total Areas of Alternating Subtriangles in a Regular Polygon with 2n Sides

Initializing live version

Requires a Wolfram Notebook System

Interact on desktop, mobile and cloud with the free Wolfram Player or other Wolfram Language products.

Let P be a point connected to and inside the vertices of a polygon with sides. Number the triangles counterclockwise from to . Then the sum of the areas of the even-numbered triangles is equal to the sum of the areas of the odd-numbered triangles.

[more]
Contributed by: Jay Warendorff (January 2009)

Open content licensed under CC BY-NC-SA

## Snapshots

## Details

A generalization of problem 4.28 in Problems in Plane and Solid Geometry v.1 Plane Geometry by Viktor Prasolov.

## Permanent Citation