Biradial Matrix

A biradial matrix consists of two sets of equally spaced radial lines separated by a distance . Use the "nodes" or "rays" buttons to change the display. The rays (nodes) can be indexed from zero starting at the segment, creating a biradial coordinate system with coordinate pairings at the nodes; check "intersection labels" to see their values. By adhering to specific connection algorithms, fundamental field structures are set with the "attract", "repel" and "hyperbola" buttons. The number of rays from each pole can be set using the sliders and , which changes the subsequent field structures. The angular phase relation between the poles (defined elsewhere) can be set with the sliders and . This geometric construct has many applications in physics. The "line thickness" and "node diameter" sliders vary the thickness of the lines and diameter of the nodes.


  • [Snapshot]
  • [Snapshot]
  • [Snapshot]


The included angles from poles and are designated as and . is the distance between poles and . There are numerous other variables that can be assigned to various segment lengths and other internal angles of the trapezoids defined by the intersecting rays. From this initial set of variables, an inverse-square equation based on the distance is derived, which corresponds to the field density as illustrated by the attraction, repulsion and hyperbola field lines. The nodes defined by the intersections of the rays can be designated with a biradial coordinate system allowing for a mathematical description of the field lines. These nodes and the resulting field lines appear related to the space networks described by Wolfram in [1]. The harmonic series is derived from the upper limit of rays from each pole in relation to the segment, indicating an underlying harmonic structure of the biradial matrix where the coordinate pairings also represent the ratios of the harmonic overtone series. The and sliders alter the "phase relation", which is related to the rotation of either or both poles and . As a conceptual model and harmonic coordinate system, the biradial matrix has many applications in physics. It is possible, for example, to define the gravitational equilibrium zone between two masses using the biradial matrix.
[1] S. Wolfram, A New Kind of Science, Champaign, IL: Wolfram Media, Inc., 2002.
[2] R. Kramer. "Project #1: The Genesis Field and the Harmonic Structure of Space-Time." (Mar 9, 2017) www.bi-radialmatrixintro.com.
    • Share:

Embed Interactive Demonstration New!

Just copy and paste this snippet of JavaScript code into your website or blog to put the live Demonstration on your site. More details »

Files require Wolfram CDF Player or Mathematica.

Mathematica »
The #1 tool for creating Demonstrations
and anything technical.
Wolfram|Alpha »
Explore anything with the first
computational knowledge engine.
MathWorld »
The web's most extensive
mathematics resource.
Course Assistant Apps »
An app for every course—
right in the palm of your hand.
Wolfram Blog »
Read our views on math,
science, and technology.
Computable Document Format »
The format that makes Demonstrations
(and any information) easy to share and
interact with.
STEM Initiative »
Programs & resources for
educators, schools & students.
Computerbasedmath.org »
Join the initiative for modernizing
math education.
Step-by-Step Solutions »
Walk through homework problems one step at a time, with hints to help along the way.
Wolfram Problem Generator »
Unlimited random practice problems and answers with built-in step-by-step solutions. Practice online or make a printable study sheet.
Wolfram Language »
Knowledge-based programming for everyone.
Powered by Wolfram Mathematica © 2017 Wolfram Demonstrations Project & Contributors  |  Terms of Use  |  Privacy Policy  |  RSS Give us your feedback
Note: To run this Demonstration you need Mathematica 7+ or the free Mathematica Player 7EX
Download or upgrade to Mathematica Player 7EX
I already have Mathematica Player or Mathematica 7+