Probabilistic Interpretation of a Fractional Derivative

This Demonstration explores the Grünwald–Letnikov definition of the fractional derivative and its numerical approximation. A geometric and probabilistic interpretation is depicted. The displayed tabular data supports the numerical calculation.


  • [Snapshot]
  • [Snapshot]
  • [Snapshot]


The Grünwald–Letnikov definition of the fractional derivative of order of is given by the expression
where represents the gamma function and the increment. We verify that
The expression can be viewed as the expected value of the discrete random variable that for takes the value with probability .
The Grünwald–Letnikov definition gets the slope of a triangle with upper corners and . The factor in the denominator expression means that, for large values of , we have a slow variation, while for small values of we have a fast variation.
The implementation of the Grünwald–Letnikov definition of the fractional derivative corresponds to an -term truncated series given by
[1] K. B. Oldham and J. Spanier, The Fractional Calculus: Theory and Application of Differentiation and Integration to Arbitrary Order, New York: Academic Press, 1974.
[2] I. Podlubny, Fractional Differential Equations, San Diego: Academic Press, 1999.
[3] J. A. Tenreiro Machado, "Discrete-Time Fractional-Order Controllers," Journal of Fractional Calculus & Applied Analysis, 4(1), 2001 pp. 47–66.
[4] A. A. Kilbas, H. M. Srivastava, and J. J. Trujillo, Theory and Applications of Fractional Differential Equations, Vol. 204, Amsterdam: Elsevier, 2006.
[5] J. A. Tenreiro Machado, "Fractional Derivatives: Probability Interpretation and Frequency Response of Rational Approximations," Communications in Nonlinear Science and Numerical Simulations, 14(9–10), 2009 pp. 3492–3497.
    • Share:

Embed Interactive Demonstration New!

Just copy and paste this snippet of JavaScript code into your website or blog to put the live Demonstration on your site. More details »

Files require Wolfram CDF Player or Mathematica.

Mathematica »
The #1 tool for creating Demonstrations
and anything technical.
Wolfram|Alpha »
Explore anything with the first
computational knowledge engine.
MathWorld »
The web's most extensive
mathematics resource.
Course Assistant Apps »
An app for every course—
right in the palm of your hand.
Wolfram Blog »
Read our views on math,
science, and technology.
Computable Document Format »
The format that makes Demonstrations
(and any information) easy to share and
interact with.
STEM Initiative »
Programs & resources for
educators, schools & students.
Computerbasedmath.org »
Join the initiative for modernizing
math education.
Step-by-Step Solutions »
Walk through homework problems one step at a time, with hints to help along the way.
Wolfram Problem Generator »
Unlimited random practice problems and answers with built-in step-by-step solutions. Practice online or make a printable study sheet.
Wolfram Language »
Knowledge-based programming for everyone.
Powered by Wolfram Mathematica © 2018 Wolfram Demonstrations Project & Contributors  |  Terms of Use  |  Privacy Policy  |  RSS Give us your feedback
Note: To run this Demonstration you need Mathematica 7+ or the free Mathematica Player 7EX
Download or upgrade to Mathematica Player 7EX
I already have Mathematica Player or Mathematica 7+