A Visual Proof of Ptolemy's Theorem

Requires a Wolfram Notebook System
Interact on desktop, mobile and cloud with the free Wolfram Player or other Wolfram Language products.
A significant result in classical geometry is Ptolemy's theorem: in a cyclic quadrilateral, the sum of the products of the two pairs of opposite sides is equal to the product of the diagonals. This Demonstration presents a visual proof of the theorem, based on [1].
[more]
Contributed by: Tomas Garza (April 2020)
Open content licensed under CC BY-NC-SA
Snapshots
Details
1. The four vertices of a quadrilateral with vertices
,
,
,
all lie on the circumference of a circle.The lengths of the sides of
are
,
,
,
and the lengths of its diagonals are
and
.
2. Draw the line (dashed red) so that
, where
is on the diagonal
. That is, the two red angles are equal. Let
and
, so that
.
3. The two blue angles are equal since they subtend the same blue arc from to
. Hence, the two triangles
and
are similar, since they have two equal angles, the blue ones and the red angles plus
.
4. Since the two shaded triangles are similar,
,
or .
5. The two orange angles are equal, , since they subtend the same arc
. The triangle
(with pink sides) and the triangle
(with dark blue sides) are similar since the two angles
and
at vertex
are equal from step 2. Then
,
or .
Finally, adding the two results,
.
Reference
[1] C. Alsina and R. B. Nelsen, When Less Is More: Visualizing Basic Inequalities, Washington, D.C.: Mathematical Association of America, 2009 p. 112. doi:10.5948/UPO9781614442028.
Permanent Citation