11481

# Birds on a Wire

A number of birds randomly land on a telephone wire. If the intervals between each bird and its closest companion were painted, what would be the expected fraction of wire painted? And what proportion of the number of intervals would be painted? The key to answering these questions is to realize that the probability distribution of interval lengths is (approximately) exponential. Knowing that, these fractions can be calculated to be 7/18 and 2/3.

### DETAILS

This problem was inspired by Birds on a Wire.
If the mean density of birds is , then the probability distribution of interval lengths is . Integrating this, the probability that an interval is less than is . Squaring that gives the probability that the two intervals on either side of a chosen interval are both smaller than the chosen interval, in which case it would not be painted. Thus, the probability that an interval of length will be painted is . Thus, the probability that a link will be painted is . Likewise, the average length of an interval weighted by the probability that it is painted is . Dividing by the average length of an interval λ gives the fraction of painted wire as .

### PERMANENT CITATION

 Share: Embed Interactive Demonstration New! Just copy and paste this snippet of JavaScript code into your website or blog to put the live Demonstration on your site. More details » Download Demonstration as CDF » Download Author Code »(preview ») Files require Wolfram CDF Player or Mathematica.

#### Related Topics

 RELATED RESOURCES
 The #1 tool for creating Demonstrations and anything technical. Explore anything with the first computational knowledge engine. The web's most extensive mathematics resource. An app for every course—right in the palm of your hand. Read our views on math,science, and technology. The format that makes Demonstrations (and any information) easy to share and interact with. Programs & resources for educators, schools & students. Join the initiative for modernizing math education. Walk through homework problems one step at a time, with hints to help along the way. Unlimited random practice problems and answers with built-in step-by-step solutions. Practice online or make a printable study sheet. Knowledge-based programming for everyone.