11520

# Constructing a Parabola from Tangent Circles

Let be a circle that does not intersect a horizontal line . Use the sliders to change the radius of or the distance of to . The locus of the centers of the circles that are tangent to both and is a parabola.

### DETAILS

The synthetic (as opposed to analytic) definition of a parabola is that a point on is at equal distances from a fixed point (the focus) and a fixed line (the directrix).
Let have center and radius and let be the line parallel to on the other side of at distance from . Consider a circle of radius and center that is tangent to both and . Then and the distance from to is also , so the centers of the tangent circles lie on a parabola with focus and directrix .

### PERMANENT CITATION

 Share: Embed Interactive Demonstration New! Just copy and paste this snippet of JavaScript code into your website or blog to put the live Demonstration on your site. More details » Download Demonstration as CDF » Download Author Code »(preview ») Files require Wolfram CDF Player or Mathematica.

#### Related Topics

 RELATED RESOURCES
 The #1 tool for creating Demonstrations and anything technical. Explore anything with the first computational knowledge engine. The web's most extensive mathematics resource. An app for every course—right in the palm of your hand. Read our views on math,science, and technology. The format that makes Demonstrations (and any information) easy to share and interact with. Programs & resources for educators, schools & students. Join the initiative for modernizing math education. Walk through homework problems one step at a time, with hints to help along the way. Unlimited random practice problems and answers with built-in step-by-step solutions. Practice online or make a printable study sheet. Knowledge-based programming for everyone.