Conic Section as Bézier Curve

Any conic section can be represented as a rational Bézier curve of degree two defined by , where are the Bernstein polynomials and the control points. It is always possible to write the expression in a standard form such that . From such a form it is easy to determine the type of the conic section: if , it is a hyperbola; if , it is a parabola; and if , it is an ellipse.


  • [Snapshot]
  • [Snapshot]
  • [Snapshot]


We show how to obtain the standard form (i.e., to make the first and last weights equal to 1) of a rational Bézier curve of degree . Let be defined by , where are the Bernstein polynomials. We neither change the curve nor its degree by applying a rational linear transformation , yielding .
The curve is thus represented in standard form by the original control points and the new weights by choosing .
    • Share:

Embed Interactive Demonstration New!

Just copy and paste this snippet of JavaScript code into your website or blog to put the live Demonstration on your site. More details »

Files require Wolfram CDF Player or Mathematica.

Mathematica »
The #1 tool for creating Demonstrations
and anything technical.
Wolfram|Alpha »
Explore anything with the first
computational knowledge engine.
MathWorld »
The web's most extensive
mathematics resource.
Course Assistant Apps »
An app for every course—
right in the palm of your hand.
Wolfram Blog »
Read our views on math,
science, and technology.
Computable Document Format »
The format that makes Demonstrations
(and any information) easy to share and
interact with.
STEM Initiative »
Programs & resources for
educators, schools & students.
Computerbasedmath.org »
Join the initiative for modernizing
math education.
Step-by-Step Solutions »
Walk through homework problems one step at a time, with hints to help along the way.
Wolfram Problem Generator »
Unlimited random practice problems and answers with built-in step-by-step solutions. Practice online or make a printable study sheet.
Wolfram Language »
Knowledge-based programming for everyone.
Powered by Wolfram Mathematica © 2018 Wolfram Demonstrations Project & Contributors  |  Terms of Use  |  Privacy Policy  |  RSS Give us your feedback
Note: To run this Demonstration you need Mathematica 7+ or the free Mathematica Player 7EX
Download or upgrade to Mathematica Player 7EX
I already have Mathematica Player or Mathematica 7+