10176

# The Number of Fixed Points in a Random Permutation

For a random permutation of , let be the random variable that counts the number of digits that remain in their original position. This Demonstration allows you to compare the relative frequencies of obtained in a sample of size 400 with the exact and approximate distributions of . It also gives the sample mean and standard deviation.

### DETAILS

This is the so-called matching problem, in which individuals mix their hats up and then randomly make a selection. The random variable is the number of individuals that select their own hat. The permutations that lead to are called derangements. The distribution of is given by , . Both the expectation and the variance of equal 1, regardless of the value of . As goes to infinity, the distribution of converges to the Poisson distribution with parameter 1.

### PERMANENT CITATION

 Share: Embed Interactive Demonstration New! Just copy and paste this snippet of JavaScript code into your website or blog to put the live Demonstration on your site. More details » Download Demonstration as CDF » Download Author Code »(preview ») Files require Wolfram CDF Player or Mathematica.

#### Related Topics

 RELATED RESOURCES
 The #1 tool for creating Demonstrations and anything technical. Explore anything with the first computational knowledge engine. The web's most extensive mathematics resource. An app for every course—right in the palm of your hand. Read our views on math,science, and technology. The format that makes Demonstrations (and any information) easy to share and interact with. Programs & resources for educators, schools & students. Join the initiative for modernizing math education. Walk through homework problems one step at a time, with hints to help along the way. Unlimited random practice problems and answers with built-in Step-by-step solutions. Practice online or make a printable study sheet. Knowledge-based programming for everyone.
 © 2015 Wolfram Demonstrations Project & Contributors  |  Terms of Use  |  Privacy Policy  |  RSS
 Note: To run this Demonstration you need Mathematica 7+ or the free Mathematica Player 7EX Download or upgrade to Mathematica Player 7EX I already have Mathematica Player or Mathematica 7+