9887

Variable States of Polarization Incident on a Wave Plate

A polarized laser beam passes through a wave plate and then a polarizer. The normalized irradiance is plotted against the analyzer angle. You may choose for the incident polarization to be circular or linear. You may vary the linear polarization angle. You may choose between a quarter- or half-wave plate, and vary the wave plate's fast-axis angle with respect to the axis.

THINGS TO TRY

SNAPSHOTS

  • [Snapshot]
  • [Snapshot]
  • [Snapshot]

DETAILS

This Demonstration uses a series of Jones matrices and vectors to predict a transmitted wave through a series of optical elements. A Jones vector describes the electric field vector as two scalar components. The phase information is preserved as a complex exponent. When a polarized beam, expressed as a Jones vector, passes through an optical element, it undergoes a transformation that can be expressed as a 2×2 matrix. Each linear optical element has a Jones matrix that describes its transformation of the transmitted wave.
The following equation shows the multiplication of the Jones vector by the polarizer and wave plate Jones matrices; and are the incident electric field components.
, where is the Jones matrix for the polarizer and is the Jones matrix for the wave plate.
The transmitted beam is a vector with components and . The irradiance is found by summing the squares of the complex conjugates of each component.
    • Share:

Embed Interactive Demonstration New!

Just copy and paste this snippet of JavaScript code into your website or blog to put the live Demonstration on your site. More details »

Files require Wolfram CDF Player or Mathematica.









 
RELATED RESOURCES
Mathematica »
The #1 tool for creating Demonstrations
and anything technical.
Wolfram|Alpha »
Explore anything with the first
computational knowledge engine.
MathWorld »
The web's most extensive
mathematics resource.
Course Assistant Apps »
An app for every course—
right in the palm of your hand.
Wolfram Blog »
Read our views on math,
science, and technology.
Computable Document Format »
The format that makes Demonstrations
(and any information) easy to share and
interact with.
STEM Initiative »
Programs & resources for
educators, schools & students.
Computerbasedmath.org »
Join the initiative for modernizing
math education.
Step-by-step Solutions »
Walk through homework problems one step at a time, with hints to help along the way.
Wolfram Problem Generator »
Unlimited random practice problems and answers with built-in Step-by-step solutions. Practice online or make a printable study sheet.
Wolfram Language »
Knowledge-based programming for everyone.
Powered by Wolfram Mathematica © 2014 Wolfram Demonstrations Project & Contributors  |  Terms of Use  |  Privacy Policy  |  RSS Give us your feedback
Note: To run this Demonstration you need Mathematica 7+ or the free Mathematica Player 7EX
Download or upgrade to Mathematica Player 7EX
I already have Mathematica Player or Mathematica 7+