4. Locus of the Solutions of a Complex Quadratic Equation

This Demonstration constructs the locus of the solutions of a complex quadratic equation , where is fixed and moves along a line through and .
The locus is an algebraic curve of degree three. Special cases are the union of a circle and a line or a line and a point. If is a positive real number and moves on the vertical line through , the locus is a strophoid.


  • [Snapshot]
  • [Snapshot]
  • [Snapshot]
    • Share:

Embed Interactive Demonstration New!

Just copy and paste this snippet of JavaScript code into your website or blog to put the live Demonstration on your site. More details »

Files require Wolfram CDF Player or Mathematica.