Area of a Parallelogram

This geometric Demonstration establishes that the area of a parallelogram bounded by vectors and is .
Use the sliders to see how various parallelograms can be transformed into ones of equal area with their bases on the axis. If the axis does not intersect the parallelogram, slide the triangular portion farthest from the axis toward it. If the axis does intersect the parallelogram, slide the triangular portion cut off by the axis to the farther end of the parallelogram.
In the examples shown, the height of the resulting parallelogram is and its base is determined by the axis intersection of the line joining to , which is easily seen to be . Thus the area is .
Clearly the same result holds if, due to the choice of triangular portion, the roles of (, ) and (, ) are interchanged.


  • [Snapshot]
  • [Snapshot]
  • [Snapshot]
    • Share:

Embed Interactive Demonstration New!

Just copy and paste this snippet of JavaScript code into your website or blog to put the live Demonstration on your site. More details »

Files require Wolfram CDF Player or Mathematica.

Related Curriculum Standards

US Common Core State Standards, Mathematics

Mathematica »
The #1 tool for creating Demonstrations
and anything technical.
Wolfram|Alpha »
Explore anything with the first
computational knowledge engine.
MathWorld »
The web's most extensive
mathematics resource.
Course Assistant Apps »
An app for every course—
right in the palm of your hand.
Wolfram Blog »
Read our views on math,
science, and technology.
Computable Document Format »
The format that makes Demonstrations
(and any information) easy to share and
interact with.
STEM Initiative »
Programs & resources for
educators, schools & students.
Computerbasedmath.org »
Join the initiative for modernizing
math education.
Step-by-Step Solutions »
Walk through homework problems one step at a time, with hints to help along the way.
Wolfram Problem Generator »
Unlimited random practice problems and answers with built-in step-by-step solutions. Practice online or make a printable study sheet.
Wolfram Language »
Knowledge-based programming for everyone.
Powered by Wolfram Mathematica © 2018 Wolfram Demonstrations Project & Contributors  |  Terms of Use  |  Privacy Policy  |  RSS Give us your feedback
Note: To run this Demonstration you need Mathematica 7+ or the free Mathematica Player 7EX
Download or upgrade to Mathematica Player 7EX
I already have Mathematica Player or Mathematica 7+