Confidence and Prediction Bands

Drag the points or alt-click the plot to add or subtract points from the dataset. The least-squares regression line for the dataset is shown, as well as the option to include confidence or prediction bands with a confidence level that you can adjust with the slider.


  • [Snapshot]
  • [Snapshot]
  • [Snapshot]


The least-squares regression line is the line that best fits a bivariate dataset in the sense of minimizing the sum of the squares of the vertical distances from each point in the dataset to the line. Denote the points in the dataset (. Assume that follows a normal distribution whose mean is a linear function of (with unknown slope and intercept) and whose standard deviation is a constant function of . Then a confidence interval for the expected value of can be constructed using standard techniques. As the expected value of is a function of , the endpoints of this interval will be as well. When plotted as a function of , these endpoints form "confidence bands" between which runs the regression line.
A confidence interval for the value associated with a new value (as opposed to a confidence interval for the mean of all such values) is called a prediction interval. Its endpoints are also functions of , which when plotted form "prediction bands". As individual values vary more than their mean, the prediction bands are wider than the confidence bands.
    • Share:

Embed Interactive Demonstration New!

Just copy and paste this snippet of JavaScript code into your website or blog to put the live Demonstration on your site. More details »

Files require Wolfram CDF Player or Mathematica.

Mathematica »
The #1 tool for creating Demonstrations
and anything technical.
Wolfram|Alpha »
Explore anything with the first
computational knowledge engine.
MathWorld »
The web's most extensive
mathematics resource.
Course Assistant Apps »
An app for every course—
right in the palm of your hand.
Wolfram Blog »
Read our views on math,
science, and technology.
Computable Document Format »
The format that makes Demonstrations
(and any information) easy to share and
interact with.
STEM Initiative »
Programs & resources for
educators, schools & students.
Computerbasedmath.org »
Join the initiative for modernizing
math education.
Step-by-Step Solutions »
Walk through homework problems one step at a time, with hints to help along the way.
Wolfram Problem Generator »
Unlimited random practice problems and answers with built-in step-by-step solutions. Practice online or make a printable study sheet.
Wolfram Language »
Knowledge-based programming for everyone.
Powered by Wolfram Mathematica © 2018 Wolfram Demonstrations Project & Contributors  |  Terms of Use  |  Privacy Policy  |  RSS Give us your feedback
Note: To run this Demonstration you need Mathematica 7+ or the free Mathematica Player 7EX
Download or upgrade to Mathematica Player 7EX
I already have Mathematica Player or Mathematica 7+