9887

Fund Drawdown Simulation

This Demonstration lets you estimate the value of a pool of money (the fund) that increases in value due to an investment return on the fund (at rates between 0 and 10% per year) and decreases in value due to an annual withdrawal. An example would be to estimate how the value of a college fund changes over the four years that tuition and living expenses are withdrawn, while the balance of the fund continues to earn interest. Similarly, the value of a retirement nest egg can be estimated under a situation where the retiree makes annual withdrawals.

THINGS TO TRY

SNAPSHOTS

  • [Snapshot]
  • [Snapshot]
  • [Snapshot]

DETAILS

A change in the "annual withdrawal increase" applies the selected fractional increase to the value set by the "initial annual withdrawal ($000s)". For example, if the initial annual withdrawal is set at $1000 and the annual withdrawal increase is set at 0.05 (to counter the effects of inflation, say), then the annual withdrawal for the second year will be $1000 x 1.05 = $1050. The annual withdrawal for the third year will be $1050 x 1.05 = $1102.50 and so on.
Here is an equation:
,
where is the annual return as a fractional value, is the annual fractional increase in the withdrawal, and is the chosen initial annual withdrawal rate.
This Demonstration solves the above differential equation over a settable range of years, up to 30 years. When the constant annual withdrawal exceeds the investment return, the value of the fund declines over time. In this situation, the "value ($K)" column of the table may turn negative. In this case, the fund has been exhausted and the additional rows and columns of the table are not meaningful.
    • Share:

Embed Interactive Demonstration New!

Just copy and paste this snippet of JavaScript code into your website or blog to put the live Demonstration on your site. More details »

Files require Wolfram CDF Player or Mathematica.







Related Curriculum Standards

US Common Core State Standards, Mathematics



 
RELATED RESOURCES
Mathematica »
The #1 tool for creating Demonstrations
and anything technical.
Wolfram|Alpha »
Explore anything with the first
computational knowledge engine.
MathWorld »
The web's most extensive
mathematics resource.
Course Assistant Apps »
An app for every course—
right in the palm of your hand.
Wolfram Blog »
Read our views on math,
science, and technology.
Computable Document Format »
The format that makes Demonstrations
(and any information) easy to share and
interact with.
STEM Initiative »
Programs & resources for
educators, schools & students.
Computerbasedmath.org »
Join the initiative for modernizing
math education.
Step-by-step Solutions »
Walk through homework problems one step at a time, with hints to help along the way.
Wolfram Problem Generator »
Unlimited random practice problems and answers with built-in Step-by-step solutions. Practice online or make a printable study sheet.
Wolfram Language »
Knowledge-based programming for everyone.
Powered by Wolfram Mathematica © 2014 Wolfram Demonstrations Project & Contributors  |  Terms of Use  |  Privacy Policy  |  RSS Give us your feedback
Note: To run this Demonstration you need Mathematica 7+ or the free Mathematica Player 7EX
Download or upgrade to Mathematica Player 7EX
I already have Mathematica Player or Mathematica 7+