9860

Hill-Climbing Algorithm

This simple version of hill-climbing algorithms belongs to the gradient methods, which search the space of possible solutions in the direction of the steepest gradient. Because it uses gradients, the algorithm frequently gets stuck in a local extreme. The basic version functions so that it always starts from the random point in the space of possible solutions. For the momentarily proposed solution, a certain neighborhood is determined using a final set of transformations and the given function is minimized only in this neighborhood. The local solution obtained is then used as a new starting point for the calculation of a new neighborhood. The solutions of each iteration are dots on the cost function landscape. The best solution for each iteration is marked by a thick dot with a black circle around it. Different colors represent different iterations in order: red, light pink, green, light yellow, blue, light orange, cyan, black, light cyan, magenta, yellow, light brown, orange, light purple, brown, light red, white, pink, purple, light green, and light blue.

SNAPSHOTS

  • [Snapshot]
  • [Snapshot]
  • [Snapshot]
  • [Snapshot]

DETAILS

S. J. Russell and P. Norvig, Artificial Intelligence: A Modern Approach, 2nd ed., Upper Saddle River, NJ: Prentice Hall, 2003 pp. 111–114.
Z. Michalewicz and D. B. Fogel, How to Solve It: Modern Heuristics, Berlin: Springer-Verlag, 2000.

RELATED LINKS

    • Share:

Embed Interactive Demonstration New!

Just copy and paste this snippet of JavaScript code into your website or blog to put the live Demonstration on your site. More details »

Files require Wolfram CDF Player or Mathematica.









 
RELATED RESOURCES
Mathematica »
The #1 tool for creating Demonstrations
and anything technical.
Wolfram|Alpha »
Explore anything with the first
computational knowledge engine.
MathWorld »
The web's most extensive
mathematics resource.
Course Assistant Apps »
An app for every course—
right in the palm of your hand.
Wolfram Blog »
Read our views on math,
science, and technology.
Computable Document Format »
The format that makes Demonstrations
(and any information) easy to share and
interact with.
STEM Initiative »
Programs & resources for
educators, schools & students.
Computerbasedmath.org »
Join the initiative for modernizing
math education.
Step-by-step Solutions »
Walk through homework problems one step at a time, with hints to help along the way.
Wolfram Problem Generator »
Unlimited random practice problems and answers with built-in Step-by-step solutions. Practice online or make a printable study sheet.
Wolfram Language »
Knowledge-based programming for everyone.
Powered by Wolfram Mathematica © 2014 Wolfram Demonstrations Project & Contributors  |  Terms of Use  |  Privacy Policy  |  RSS Give us your feedback
Note: To run this Demonstration you need Mathematica 7+ or the free Mathematica Player 7EX
Download or upgrade to Mathematica Player 7EX
I already have Mathematica Player or Mathematica 7+