10217

# Least-Squares Estimation of an Ellipse

Given the ellipse , a random sample of uniformly distributed abscissae in the interval is generated. From these a set of ordinates is obtained by adding to each corresponding point on the ellipse a normally distributed error with mean 0 and standard deviation 0.1. The set of points thus obtained is used to estimate the parameters of the ellipse with the least-squares method.
In the graph, the dots represent the sample points generated according to the procedure. The blue curve is the original ellipse, while the red one is the estimated ellipse for a sample of size . Even for a relatively small sample size the result of the estimation appears generally to be rather good. However, using the slider to increase n shows that the estimation does not always improve with increasing sample size, contrary to intuition. The mean of the squared differences between the estimated ellipse and the true (original) one at each of the observed abscissae does not seem to decrease as n grows, as can be seen in the inset.
The reason for this odd behavior is that sample points abscissae far apart from the center have a disproportionate influence on the least-squares calculations, since the differences to be measured with respect to the curve increase enormously due to the effect of the slope of the ellipse near the extremes of the horizontal axis.
Press the button at the bottom for new samples.

### PERMANENT CITATION

 Share: Embed Interactive Demonstration New! Just copy and paste this snippet of JavaScript code into your website or blog to put the live Demonstration on your site. More details » Download Demonstration as CDF » Download Author Code »(preview ») Files require Wolfram CDF Player or Mathematica.

#### Related Topics

 RELATED RESOURCES
 The #1 tool for creating Demonstrations and anything technical. Explore anything with the first computational knowledge engine. The web's most extensive mathematics resource. An app for every course—right in the palm of your hand. Read our views on math,science, and technology. The format that makes Demonstrations (and any information) easy to share and interact with. Programs & resources for educators, schools & students. Join the initiative for modernizing math education. Walk through homework problems one step at a time, with hints to help along the way. Unlimited random practice problems and answers with built-in Step-by-step solutions. Practice online or make a printable study sheet. Knowledge-based programming for everyone.
 © 2015 Wolfram Demonstrations Project & Contributors  |  Terms of Use  |  Privacy Policy  |  RSS
 Note: To run this Demonstration you need Mathematica 7+ or the free Mathematica Player 7EX Download or upgrade to Mathematica Player 7EX I already have Mathematica Player or Mathematica 7+