11284

# Local Markov Chains for Elementary Cellular Automata

Cellular automata (CA) are defined by a mapping from the values of a cell and its neighbors to the next value of that cell. If the value of a cell and its neighborhood are matched to a state, the next state of that range can be defined if the values of the cells to the right and left of the range are also known. Assume that the values in the cells immediately to the right and left of the neighborhood are equally likely. With this information, create a local Markov chain (LMC) for a given range of a cell and its neighborhood. This Demonstration shows the LMC for the elementary cellular automata; you select the rule from the 2D slider that represents the rule space. The coordinates represent the primitives that make up the rule, according to the author's previous research. The colors of the edges correspond to the Wolfram class: green for class 1, yellow for class 2, purple for class 3, and red for class 4.

### DETAILS

Snapshot 1: class 1 cellular automaton
Snapshot 2: class 2 cellular automaton
Snapshot 3: class 3 cellular automaton
Snapshot 4: class 4 cellular automaton

### PERMANENT CITATION

 Share: Embed Interactive Demonstration New! Just copy and paste this snippet of JavaScript code into your website or blog to put the live Demonstration on your site. More details » Download Demonstration as CDF » Download Author Code »(preview ») Files require Wolfram CDF Player or Mathematica.

#### Related Topics

 RELATED RESOURCES
 The #1 tool for creating Demonstrations and anything technical. Explore anything with the first computational knowledge engine. The web's most extensive mathematics resource. An app for every course—right in the palm of your hand. Read our views on math,science, and technology. The format that makes Demonstrations (and any information) easy to share and interact with. Programs & resources for educators, schools & students. Join the initiative for modernizing math education. Walk through homework problems one step at a time, with hints to help along the way. Unlimited random practice problems and answers with built-in step-by-step solutions. Practice online or make a printable study sheet. Knowledge-based programming for everyone.