10217

# Orbit of a Launched Satellite

Kepler observed that the path of a satellite in an orbit around a heavy mass traces out an ellipse. More generally, an orbit in the absence of a third body is always a conic section (i.e., an ellipse, parabola, or hyperbola). For a parabolic orbit, the eccentricity equals 1, for any value of the initial launch speed. This speed along with the planet's mass, the initial altitude and the gravitational constant, , determine the eccentricity of the conic section traced by the satellite's orbit. If the orbit is closed, then the speed is always greatest at the smallest distance from the planet and smallest at the greatest distance from the planet. This is derived from conservation of angular momentum.
An image of a double cone and its intersection with a plane traces out the corresponding conic for the satellite's trajectory.

### DETAILS

For a circular or elliptical orbit, the potential energy is twice the negative of kinetic energy, as a result of the virial theorem. The eccentricity is zero for a circular orbit and for an elliptical orbit. For a hyperbolic orbit . When , the shape of the orbit degenerates to a parabola, moving at the escape velocity.
In this Demonstration, the largest eccentricity is about 21. Also note that the conic image will not generate for eccentricities greater than about 10.

### PERMANENT CITATION

 Share: Embed Interactive Demonstration New! Just copy and paste this snippet of JavaScript code into your website or blog to put the live Demonstration on your site. More details » Download Demonstration as CDF » Download Author Code »(preview ») Files require Wolfram CDF Player or Mathematica.

#### Related Topics

 RELATED RESOURCES
 The #1 tool for creating Demonstrations and anything technical. Explore anything with the first computational knowledge engine. The web's most extensive mathematics resource. An app for every course—right in the palm of your hand. Read our views on math,science, and technology. The format that makes Demonstrations (and any information) easy to share and interact with. Programs & resources for educators, schools & students. Join the initiative for modernizing math education. Walk through homework problems one step at a time, with hints to help along the way. Unlimited random practice problems and answers with built-in Step-by-step solutions. Practice online or make a printable study sheet. Knowledge-based programming for everyone.