A Concurrency from Circumcircles of Subtriangles

Let ABC be a triangle and let the incircle intersect BC, CA, and AB at A', B', and C', respectively. Let the circumcircles of AB'C', A'BC', and A'B'C intersect the circumcircle of ABC (apart from A, B, and C) at A'', B'', and C'', respectively. Then A'A'', B'B'', and C'C'' are concurrent.

THINGS TO TRY

SNAPSHOTS

  • [Snapshot]
  • [Snapshot]
  • [Snapshot]

DETAILS

See Four Circles—a problem from the Canadian Mathematical Olympiad 2007.
    • Share:

Embed Interactive Demonstration New!

Just copy and paste this snippet of JavaScript code into your website or blog to put the live Demonstration on your site. More details »

Files require Wolfram CDF Player or Mathematica.