Biregular Star Graphs

This Demonstration shows a family of biregular graphs that arise in the study of inverse problems on electrical networks. The blue nodes are boundaries and the red nodes are interiors. The sliders control the size of the blue clusters, the total number of blue clusters, and the number of clusters incident to any red node.
Each of these graphs is called a "star". There is a transformation that yields an electrically equivalent "K" network. Studying the "K" network allows one to determine recoverability properties of the inverse problem. For more information, see [1] in the Details section.
Biregular graphs such as these arise in projective geometry due to the Levi graph construction.


  • [Snapshot]
  • [Snapshot]
  • [Snapshot]


[1] A. Levy. "Biregular Networks." (Jul 20, 2014) www.math.washington.edu/~avius/biregular.pdf.
[2] University of Washington. "REU Summer 2014 Inverse Problems." (2014) www.math.washington.edu/~reu.
    • Share:

Embed Interactive Demonstration New!

Just copy and paste this snippet of JavaScript code into your website or blog to put the live Demonstration on your site. More details »

Files require Wolfram CDF Player or Mathematica.

Mathematica »
The #1 tool for creating Demonstrations
and anything technical.
Wolfram|Alpha »
Explore anything with the first
computational knowledge engine.
MathWorld »
The web's most extensive
mathematics resource.
Course Assistant Apps »
An app for every course—
right in the palm of your hand.
Wolfram Blog »
Read our views on math,
science, and technology.
Computable Document Format »
The format that makes Demonstrations
(and any information) easy to share and
interact with.
STEM Initiative »
Programs & resources for
educators, schools & students.
Computerbasedmath.org »
Join the initiative for modernizing
math education.
Step-by-Step Solutions »
Walk through homework problems one step at a time, with hints to help along the way.
Wolfram Problem Generator »
Unlimited random practice problems and answers with built-in step-by-step solutions. Practice online or make a printable study sheet.
Wolfram Language »
Knowledge-based programming for everyone.
Powered by Wolfram Mathematica © 2018 Wolfram Demonstrations Project & Contributors  |  Terms of Use  |  Privacy Policy  |  RSS Give us your feedback
Note: To run this Demonstration you need Mathematica 7+ or the free Mathematica Player 7EX
Download or upgrade to Mathematica Player 7EX
I already have Mathematica Player or Mathematica 7+