9827

Geometry of Quartic Polynomials

Given a quartic with four real roots (at least two distinct), those roots are the first coordinate projections of a regular tetrahedron in . That tetrahedron has a unique inscribed sphere, which projects onto an interval whose endpoints are the two roots of . Let ,, be the roots of ; then the points , , form an equilateral triangle whose vertices project on the critical points of the quartic (this is the "first derivative triangle"). A similar triangle is formed by negating the coordinates of these points ("conjugate first derivative triangle"). This application is relevant to the following so far open conjecture: there does not exist a quartic polynomial with four distinct rational roots such that , , and all have rational roots.

SNAPSHOTS

  • [Snapshot]
  • [Snapshot]
  • [Snapshot]
  • [Snapshot]
  • [Snapshot]
  • [Snapshot]
  • [Snapshot]
  • [Snapshot]
  • [Snapshot]
  • [Snapshot]
  • [Snapshot]

DETAILS

Tetrahedron rotation: to rotate the tetrahedron independently of the polynomial, choose a rotation axis with the trackball and an angle with the slider.
Snapshot 1: tetrahedron vertices are projected on the - plane
Reference
[1] S. Northshield, "Geometry of Cubic Polynomials," Mathematics Magazine, 86, 2013 pp. 136–143.
[2] R. W. D. Nickalls, "The Quartic Equation: Alignement with an Equivalent Tetrahedron," The Mathematical Gazette, 96(535), 2012 pp. 49–55.
    • Share:

Embed Interactive Demonstration New!

Just copy and paste this snippet of JavaScript code into your website or blog to put the live Demonstration on your site. More details »

Files require Wolfram CDF Player or Mathematica.









 
RELATED RESOURCES
Mathematica »
The #1 tool for creating Demonstrations
and anything technical.
Wolfram|Alpha »
Explore anything with the first
computational knowledge engine.
MathWorld »
The web's most extensive
mathematics resource.
Course Assistant Apps »
An app for every course—
right in the palm of your hand.
Wolfram Blog »
Read our views on math,
science, and technology.
Computable Document Format »
The format that makes Demonstrations
(and any information) easy to share and
interact with.
STEM Initiative »
Programs & resources for
educators, schools & students.
Computerbasedmath.org »
Join the initiative for modernizing
math education.
Step-by-step Solutions »
Walk through homework problems one step at a time, with hints to help along the way.
Wolfram Problem Generator »
Unlimited random practice problems and answers with built-in Step-by-step solutions. Practice online or make a printable study sheet.
Wolfram Language »
Knowledge-based programming for everyone.
Powered by Wolfram Mathematica © 2014 Wolfram Demonstrations Project & Contributors  |  Terms of Use  |  Privacy Policy  |  RSS Give us your feedback
Note: To run this Demonstration you need Mathematica 7+ or the free Mathematica Player 7EX
Download or upgrade to Mathematica Player 7EX
I already have Mathematica Player or Mathematica 7+