10217

# Geometry of Quartic Polynomials

Given a quartic with four real roots (at least two distinct), those roots are the first coordinate projections of a regular tetrahedron in . That tetrahedron has a unique inscribed sphere, which projects onto an interval whose endpoints are the two roots of . Let ,, be the roots of ; then the points , , form an equilateral triangle whose vertices project on the critical points of the quartic (this is the "first derivative triangle"). A similar triangle is formed by negating the coordinates of these points ("conjugate first derivative triangle"). This application is relevant to the following so far open conjecture: there does not exist a quartic polynomial with four distinct rational roots such that , , and all have rational roots.

### DETAILS

Tetrahedron rotation: to rotate the tetrahedron independently of the polynomial, choose a rotation axis with the trackball and an angle with the slider.
Snapshot 1: tetrahedron vertices are projected on the - plane
Reference
[1] S. Northshield, "Geometry of Cubic Polynomials," Mathematics Magazine, 86, 2013 pp. 136–143.
[2] R. W. D. Nickalls, "The Quartic Equation: Alignement with an Equivalent Tetrahedron," The Mathematical Gazette, 96(535), 2012 pp. 49–55.

### PERMANENT CITATION

 Share: Embed Interactive Demonstration New! Just copy and paste this snippet of JavaScript code into your website or blog to put the live Demonstration on your site. More details » Download Demonstration as CDF » Download Author Code »(preview ») Files require Wolfram CDF Player or Mathematica.

#### Related Topics

 RELATED RESOURCES
 The #1 tool for creating Demonstrations and anything technical. Explore anything with the first computational knowledge engine. The web's most extensive mathematics resource. An app for every course—right in the palm of your hand. Read our views on math,science, and technology. The format that makes Demonstrations (and any information) easy to share and interact with. Programs & resources for educators, schools & students. Join the initiative for modernizing math education. Walk through homework problems one step at a time, with hints to help along the way. Unlimited random practice problems and answers with built-in Step-by-step solutions. Practice online or make a printable study sheet. Knowledge-based programming for everyone.