Meissner Tetrahedra

The two Meissner bodies are solids of constant width. Others are spheres and certain solids of revolution.
The Reuleaux tetrahedron is the intersection of four balls of radius 1, each centered at a vertex of a regular tetrahedron with side length 1. Each of the six curved edges of is the intersection of two spheres; three edges meet at each vertex and three surround each face.
For a curved edge , let be the corresponding straight edge of and let and be the faces of that meet at . The planes containing and cut a wedge out of with edges that are circular arcs and . The wedge is formed by rotating into around . Rounding means to replace with .
The first kind of Meissner body is obtained by rounding the three edges at a vertex of and the second by rounding the three edges around a face of .



  • [Snapshot]
  • [Snapshot]
  • [Snapshot]


[1] B. Kawohl and C. Weber. "Meissner's Mysterious Bodies." (Jun 19, 2011) www.mi.uni-koeln.de/mi/Forschung/Kawohl/kawohl/pub100.pdf.
[2] E. Meissner, "Über Punktmengen konstanter Breite," Vierteljahrsschrift der Naturforschenden Gesellschaft in Zürich, 56(42–50), 1911. www.archive.org/stream/vierteljahrsschr56natu# page/n53/mode/2up.
[3] E. Meissner and F. Schilling, "Drei Gipsmodelle von Flächen konstanter Breite," Zeitschrift für angewandte Mathematik und Physik, 60(92–94), 1912.
    • Share:

Embed Interactive Demonstration New!

Just copy and paste this snippet of JavaScript code into your website or blog to put the live Demonstration on your site. More details »

Files require Wolfram CDF Player or Mathematica.

Mathematica »
The #1 tool for creating Demonstrations
and anything technical.
Wolfram|Alpha »
Explore anything with the first
computational knowledge engine.
MathWorld »
The web's most extensive
mathematics resource.
Course Assistant Apps »
An app for every course—
right in the palm of your hand.
Wolfram Blog »
Read our views on math,
science, and technology.
Computable Document Format »
The format that makes Demonstrations
(and any information) easy to share and interact with.
STEM Initiative »
Programs & resources for
educators, schools & students.
Computerbasedmath.org »
Join the initiative for modernizing
math education.
Powered by Wolfram Mathematica © 2014 Wolfram Demonstrations Project & Contributors  |  Terms of Use  |  Privacy Policy  |  RSS Give us your feedback
Note: To run this Demonstration you need Mathematica 7+ or the free Mathematica Player 7EX
Download or upgrade to Mathematica Player 7EX
I already have Mathematica Player or Mathematica 7+