9827

Speed of Sound in Water-Air Mixtures

This Demonstration calculates the speed of sound for a homogeneous mixture of water and air. Surface tension is neglected for air bubbles in water or water droplets in air, and density is assumed independent of temperature for simplicity. It is shown that the speed of sound is much lower for a large range of mixing ratios than the speed of sound in either air or water alone. The speed of sound in the mixture is determined predominantly by the density of water and the compressibility of air.

SNAPSHOTS

  • [Snapshot]
  • [Snapshot]
  • [Snapshot]

DETAILS

References
[1] C. E. Brennen, "Homogeneous Bubbly Flows," Captivation and Bubble Dynamics, Oxford: Oxford University Press, 1995. http://authors.library.caltech.edu/25017/4/chap6.htm.
[2] Wikipedia, "Sound of Speed." (Feb 08, 2011) http://en.wikipedia.org/wiki/Speed_of_sound.
[4] W. Marczak, "Water as a Standard in the Measurements of Speed of Sound in Liquids," Journal of the Acoustical Society of America, 102(5), 1997 pp. 2776–2779.
    • Share:

Embed Interactive Demonstration New!

Just copy and paste this snippet of JavaScript code into your website or blog to put the live Demonstration on your site. More details »

Files require Wolfram CDF Player or Mathematica.









 
RELATED RESOURCES
Mathematica »
The #1 tool for creating Demonstrations
and anything technical.
Wolfram|Alpha »
Explore anything with the first
computational knowledge engine.
MathWorld »
The web's most extensive
mathematics resource.
Course Assistant Apps »
An app for every course—
right in the palm of your hand.
Wolfram Blog »
Read our views on math,
science, and technology.
Computable Document Format »
The format that makes Demonstrations
(and any information) easy to share and
interact with.
STEM Initiative »
Programs & resources for
educators, schools & students.
Computerbasedmath.org »
Join the initiative for modernizing
math education.
Step-by-step Solutions »
Walk through homework problems one step at a time, with hints to help along the way.
Wolfram Problem Generator »
Unlimited random practice problems and answers with built-in Step-by-step solutions. Practice online or make a printable study sheet.
Wolfram Language »
Knowledge-based programming for everyone.
Powered by Wolfram Mathematica © 2014 Wolfram Demonstrations Project & Contributors  |  Terms of Use  |  Privacy Policy  |  RSS Give us your feedback
Note: To run this Demonstration you need Mathematica 7+ or the free Mathematica Player 7EX
Download or upgrade to Mathematica Player 7EX
I already have Mathematica Player or Mathematica 7+