System Bandwidth for Cascaded Amplifiers

This Demonstration calculates the total system risetime and bandwidth for a series of up to six cascaded amplifiers as a function of the individual bandwidths of each amplifier. It assumes that each individual amplifier does not load or change the bandwidth of any other amplifier.


  • [Snapshot]
  • [Snapshot]
  • [Snapshot]


The approximate total system bandwidth , for a series of cascaded wide-bandwidth amplifiers is given by the equation where through are the bandwidths of the individual amplifier stages. The units for the bandwidth sliders are controlled by the "units of frequency" button. It is assumed that each stage is independent of other stages—input impedance of each stage is infinity and the output impedance is zero. The equation is approximate, but reasonably accurate for most amplifiers. Most accuracy occurs when one amplifier is clearly the dominant pole. Worst case accuracy occurs if all amplifiers are identical in bandwidth. In this case, the most accuracy occurs when the individual amplifiers have a maximally flat envelope delay (MFED) filter response. For this special case, and with a six-amplifier system, a 3.36% error occurs. The number of actual poles within any one particular amplifier is unimportant to this equation as long as the above conditions are satisfied.
Bandwidth and risetime are approximately related by the equation , where is the bandwidth in GHz and the system risetime trs is in ns. The actual units for the system risetime are selectable using the "units of time" button. This equation is approximate and is most accurate when the system filter response is MFED. This equation can be used to calculate a bandwidth for an individual amplifier should the risetime be known instead of the amplifier bandwidth.
Reference: A. Hollister, Wideband Amplifier Design, Raleigh, NC: SciTech Publishing, 2007.
    • Share:

Embed Interactive Demonstration New!

Just copy and paste this snippet of JavaScript code into your website or blog to put the live Demonstration on your site. More details »

Files require Wolfram CDF Player or Mathematica.

Mathematica »
The #1 tool for creating Demonstrations
and anything technical.
Wolfram|Alpha »
Explore anything with the first
computational knowledge engine.
MathWorld »
The web's most extensive
mathematics resource.
Course Assistant Apps »
An app for every course—
right in the palm of your hand.
Wolfram Blog »
Read our views on math,
science, and technology.
Computable Document Format »
The format that makes Demonstrations
(and any information) easy to share and
interact with.
STEM Initiative »
Programs & resources for
educators, schools & students.
Computerbasedmath.org »
Join the initiative for modernizing
math education.
Step-by-Step Solutions »
Walk through homework problems one step at a time, with hints to help along the way.
Wolfram Problem Generator »
Unlimited random practice problems and answers with built-in step-by-step solutions. Practice online or make a printable study sheet.
Wolfram Language »
Knowledge-based programming for everyone.
Powered by Wolfram Mathematica © 2018 Wolfram Demonstrations Project & Contributors  |  Terms of Use  |  Privacy Policy  |  RSS Give us your feedback
Note: To run this Demonstration you need Mathematica 7+ or the free Mathematica Player 7EX
Download or upgrade to Mathematica Player 7EX
I already have Mathematica Player or Mathematica 7+