Pólya's Urn

Requires a Wolfram Notebook System
Interact on desktop, mobile and cloud with the free Wolfram Player or other Wolfram Language products.
Initially, an urn contains black marbles and
white ones. Every minute, one marble is chosen from the urn at random and replaced, together with another marble of the same color. The proportion of black marbles in the urn after
minutes is the random variable
. The sequence of random variables is a martingale, and thus converges almost surely to a limit random variable
. This limit random variable
has the beta distribution
. This Demonstration enables you either to plot the graph of
against
for 1000 minutes, demonstrating the convergence, or to take samples of the random variable
, comparing histograms of the resulting data with the PDF of the beta distribution.
Contributed by: Mark Hennings (March 2011)
Open content licensed under CC BY-NC-SA
Snapshots
Details
G. R. Grimmett and D. R. Stirzaker, Probability and Random Processes, Oxford: Oxford University Press, 1982.
"Urn problem," Wikipedia.
Permanent Citation
"Pólya's Urn"
http://demonstrations.wolfram.com/PolyasUrn/
Wolfram Demonstrations Project
Published: March 7 2011