Rotating Points on Two Circles

Requires a Wolfram Notebook System
Interact on desktop, mobile and cloud with the free Wolfram Player or other Wolfram Language products.
This Demonstration illustrates a problem from the Australian Mathematical Olympiad held in 1979. Consider two intersecting circles—in our implementation the orange circle is fixed and there are two locators to modify the blue circle. Let and
be the two red points of intersection. Starting simultaneously from
, two (blue) points
and
move with constant speeds around the two circles in the same direction. The two points return to
simultaneously after one revolution. Then
,
, and
are always collinear and there is a fixed point (the yellow disk)
such that, at any time, the distances from
to the moving points are equal.
Contributed by: Jaime Rangel-Mondragon (July 2011)
Open content licensed under CC BY-NC-SA
Snapshots
Details
detailSectionParagraphPermanent Citation
"Rotating Points on Two Circles"
http://demonstrations.wolfram.com/RotatingPointsOnTwoCircles/
Wolfram Demonstrations Project
Published: July 26 2011