Three Circles with Two Common Tangents

Requires a Wolfram Notebook System
Interact on desktop, mobile and cloud with the free Wolfram Player or other Wolfram Language products.
Let be a triangle circumscribed by the circle
. Let
be a point on
; form the line
. Consider three other circles
,
, and
with the common tangent
, with
inscribed in the triangle
, and
and
tangent to both the segment
and
. Prove that
,
, and
have two common tangents.
Contributed by: Jaime Rangel-Mondragón (July 2013)
Open content licensed under CC BY-NC-SA
Snapshots
Details
The statement holds for arbitrary points ,
,
on
. Moreover, the statement holds for an arbitrary point
on
. You can drag the vertices A, B and C and change the position of
using a slider. This is problem 4 from the eleventh International Mathematical Olympiad (IMO) held in Bucharest, Romania, July 5–20, 1969.
Reference
[1] D. Djukić, V. Janković, I. Matić, and N. Petrović, The IMO Compendium: A Collection of Problems Suggested for the International Mathematical Olympiads, 1959–2009, 2nd ed., New York: Springer, 2011.
Permanent Citation