9464

Chaotic Dynamics of a Magnetic Pendulum

A highly sensitive dependence on initial conditions is one of the fundamental properties of chaos. An example of such a chaotic system is a magnetic pendulum in which a magnet attached to the end of a pendulum oscillates over a plane where a set of attractive magnets are present. Depending on the initial conditions, the pendulum will come to rest at one of the magnet positions, but the final resting point can be highly sensitive to initial conditions. The trajectory generated from of each of the three initial positions is shown using a parametric plot. By varying the initial position, friction of the system, and magnet position, the final state of each trajectory can be altered.

SNAPSHOTS

  • [Snapshot]
  • [Snapshot]
  • [Snapshot]

DETAILS

References
[1] H. Peitgen, H. Jurgens, and D. Saupe, Chaos and Fractals: New Frontiers of Science, New York: Springer-Verlag, 2004.
[2] W. G. Mitchener, Plotting and Dynamical Systems How-to, (Jan 25, 2011) {}
    • Share:

Embed Interactive Demonstration New!

Just copy and paste this snippet of JavaScript code into your website or blog to put the live Demonstration on your site. More details »

Files require Wolfram CDF Player or Mathematica.









 
RELATED RESOURCES
Mathematica »
The #1 tool for creating Demonstrations
and anything technical.
Wolfram|Alpha »
Explore anything with the first
computational knowledge engine.
MathWorld »
The web's most extensive
mathematics resource.
Course Assistant Apps »
An app for every course—
right in the palm of your hand.
Wolfram Blog »
Read our views on math,
science, and technology.
Computable Document Format »
The format that makes Demonstrations
(and any information) easy to share and interact with.
STEM Initiative »
Programs & resources for
educators, schools & students.
Computerbasedmath.org »
Join the initiative for modernizing
math education.
Powered by Wolfram Mathematica © 2014 Wolfram Demonstrations Project & Contributors  |  Terms of Use  |  Privacy Policy  |  RSS Give us your feedback
Note: To run this Demonstration you need Mathematica 7+ or the free Mathematica Player 7EX
Download or upgrade to Mathematica Player 7EX
I already have Mathematica Player or Mathematica 7+