Continuous Functions Are Integrable

This Demonstration illustrates a theorem from calculus: A continuous function on a closed interval is integrable, which means that the difference between the upper and lower sums approaches 0 as the length of the subintervals approaches 0.



  • [Snapshot]
  • [Snapshot]
  • [Snapshot]
    • Share:

Embed Interactive Demonstration New!

Just copy and paste this snippet of JavaScript code into your website or blog to put the live Demonstration on your site. More details »

Files require Wolfram CDF Player or Mathematica.