Cosine and Sine Identities with Dihedral Transformations

The relation between certain cosine and sine identities and certain rotations and reflections in the plane are exhibited. For example, is the same as , which is the (90°) clockwise rotation, , of the point .


  • [Snapshot]
  • [Snapshot]
  • [Snapshot]


The cosine and sine angle addition identities encompass the rotation and reflection symmetries of the unit circle. Frequently noted special cases of these identities encompass what is called the dihedral group of index 4. This Demonstration exhibits the relation between these special identities and dihedral symmetries of the unit circle. A (one-dimensional) translation of by , or corresponds to the rotation in the plane by the angle , acting on the point . A (one-dimensional) reflection of across , , , or (given by ) corresponds to the reflection in the plane across the line through the origin at angle (with respect to the positive axis), acting on the point .
    • Share:

Embed Interactive Demonstration New!

Just copy and paste this snippet of JavaScript code into your website or blog to put the live Demonstration on your site. More details »

Files require Wolfram CDF Player or Mathematica.

Mathematica »
The #1 tool for creating Demonstrations
and anything technical.
Wolfram|Alpha »
Explore anything with the first
computational knowledge engine.
MathWorld »
The web's most extensive
mathematics resource.
Course Assistant Apps »
An app for every course—
right in the palm of your hand.
Wolfram Blog »
Read our views on math,
science, and technology.
Computable Document Format »
The format that makes Demonstrations
(and any information) easy to share and
interact with.
STEM Initiative »
Programs & resources for
educators, schools & students.
Computerbasedmath.org »
Join the initiative for modernizing
math education.
Step-by-Step Solutions »
Walk through homework problems one step at a time, with hints to help along the way.
Wolfram Problem Generator »
Unlimited random practice problems and answers with built-in step-by-step solutions. Practice online or make a printable study sheet.
Wolfram Language »
Knowledge-based programming for everyone.
Powered by Wolfram Mathematica © 2018 Wolfram Demonstrations Project & Contributors  |  Terms of Use  |  Privacy Policy  |  RSS Give us your feedback
Note: To run this Demonstration you need Mathematica 7+ or the free Mathematica Player 7EX
Download or upgrade to Mathematica Player 7EX
I already have Mathematica Player or Mathematica 7+