Cyclic Voltammetry: Characteristic Points'/> Cyclic Voltammetry for a Redox Reaction with Diffusion - Wolfram Demonstrations Project

Cyclic Voltammetry for a Redox Reaction with Diffusion

Requires a Wolfram Notebook System

Interact on desktop, mobile and cloud with the free Wolfram CDF Player or other Wolfram Language products.

Requires a Wolfram Notebook System

Edit on desktop, mobile and cloud with any Wolfram Language product.

This Demonstration shows a numerical simulation of the cyclic-voltammetric response for a one-step redox reaction () involving two soluble species. Mass transport of both species is characterized as 1D semi-infinite diffusion from or toward a planar electrode in a quiescent electrolyte. Cyclic voltammogram and interfacial concentration versus potential curves are plotted. You can experiment with the effects of electron transfer kinetics, mass transport, and potential scan rate using the controls for the dimensionless parameters. You can also explore the dependence on initial and reversal potentials, and .

Contributed by: Claude Montella and Jean-Paul Diard (February 2016)
(Univ. Grenoble Alpes, LEPMI, Grenoble, France)
Open content licensed under CC BY-NC-SA


Snapshots


Details

This Demonstration models the Faradaic response for a one-step redox reaction () to a typical cyclic-voltammetry (CV) input signal. The reaction involves two soluble species, and , on a planar electrode (e.g., Pt electrode) in a quiescent electrolyte.

The numerical solution of the 1D linear diffusion equations, together with the boundary condition (relative to electrochemical kinetics) at the electrolyte/electrode interface and the bulk conditions (constant concentrations with respect to time), is readily obtained using the so-called method of lines implemented in Mathematica's built-in function NDSolve. The dimensionless current density is computed versus time from the dimensionless flux of electroactive species at the interface. You can vary the parameters (logarithmic scale) and as well as the diffusion coefficient ratio . You can also vary the dimensionless initial potential and reversal potential within some limits.

Numerical simulation provides the dimensionless cyclic voltammogram (the parametric curve versus ), together with the dimensionless concentration of redox species, and , as a function of dimensionless space and time variables. The interfacial values (, with superscript "s"), that satisfy with , are plotted versus .

The dimensionless coordinates of CV peaks are evaluated in both the reduction (forward scan) and oxidation (reverse scan) directions, whenever such peaks exist. The two limiting behaviors (relative to the first forward scan only) pertaining respectively to reversible electron-transfer kinetics ( and , observed at large enough values of and , irrespective of ) and totally irreversible kinetics ( and , observed at low enough values of and large enough values of , irrespective of ) can be readily obtained from numerical experimentation.

References

[1] A. J. Bard and L. R. Faulkner, Electrochemical Methods: Fundamentals and Applications, 2nd ed., New York: Wiley, 2001.

[2] J.-P. Diard, B. Le Gorrec, and C. Montella, Cinétique électrochimique, Paris: Hermann, 1996.

[3] J. M. Savéant, Elements of Molecular and Biomolecular Electrochemistry, Hoboken, NJ: Wiley-Interscience, 2006.



Feedback (field required)
Email (field required) Name
Occupation Organization
Note: Your message & contact information may be shared with the author of any specific Demonstration for which you give feedback.
Send