Ecosystem Dynamics

Consider an ecosystem consisting of three trophic levels, 1 being the lowest and 3 the top predator level. Let the system be described by a set of differential equations, each representing the biomass dynamics of one of the three levels. The model is within the basic framework introduced by May and co-workers [1]; represents biomasses of the trophic level.
A biologically consistent system is obtained with non-negative parameter values. The corner solution reduces the system to just the lowest trophic level (1), while and , , , and positive defines a system of three distinct levels, where levels 1 and 3 only interact through level 2.
Initial biomass levels are indicated in the graph by a red point, while corresponding terminal values are found at the green point. The connecting blue curve is the time path of the biomass development within the three trophic levels between these two points. The three bars give a graphical representation of the terminal biomasses of the three levels.


  • [Snapshot]
  • [Snapshot]
  • [Snapshot]
  • [Snapshot]
  • [Snapshot]
  • [Snapshot]
  • [Snapshot]
  • [Snapshot]


[1] R. May, J. R. Beddington, C. W. Clark, S. J. Holt, and R. M. Laws, "Management of Multispecies Fisheries," Science, 205, 1979 pp. 267–277.
    • Share:

Embed Interactive Demonstration New!

Just copy and paste this snippet of JavaScript code into your website or blog to put the live Demonstration on your site. More details »

Files require Wolfram CDF Player or Mathematica.

Mathematica »
The #1 tool for creating Demonstrations
and anything technical.
Wolfram|Alpha »
Explore anything with the first
computational knowledge engine.
MathWorld »
The web's most extensive
mathematics resource.
Course Assistant Apps »
An app for every course—
right in the palm of your hand.
Wolfram Blog »
Read our views on math,
science, and technology.
Computable Document Format »
The format that makes Demonstrations
(and any information) easy to share and
interact with.
STEM Initiative »
Programs & resources for
educators, schools & students.
Computerbasedmath.org »
Join the initiative for modernizing
math education.
Step-by-Step Solutions »
Walk through homework problems one step at a time, with hints to help along the way.
Wolfram Problem Generator »
Unlimited random practice problems and answers with built-in step-by-step solutions. Practice online or make a printable study sheet.
Wolfram Language »
Knowledge-based programming for everyone.
Powered by Wolfram Mathematica © 2018 Wolfram Demonstrations Project & Contributors  |  Terms of Use  |  Privacy Policy  |  RSS Give us your feedback
Note: To run this Demonstration you need Mathematica 7+ or the free Mathematica Player 7EX
Download or upgrade to Mathematica Player 7EX
I already have Mathematica Player or Mathematica 7+