Euler's Method for Solving Linear Diophantine Equations

A linear Diophantine equation in two variables is an equation of the form , where , , and are integers and solutions are sought in integers. This Demonstration shows Euler's method for solving such an equation.
When using the second method dividing by means finding an integer such that , while in the first it is the integer part of .
As an example, consider the linear Diophantine equation ; rewrite it as . Introduce the variable and simplify to get a new equation, . Solving for gives , and finally . Assigning integer values to gives all possible solutions to the original equation.
If we rewrite the equation as one more step is needed.
In this example, we can write for integers and (i.e. ), so the process terminates on the first iteration. If there had been a fraction, another variable would be introduced to produce a new equation between the last two variables and . After a finite number of iterations, the process must end because the coefficients are decreasing positive integers. Assigning integer values to the last variable and substituting back up the chain gives all solutions to the original equation in and .


  • [Snapshot]
  • [Snapshot]
  • [Snapshot]


[1] T. Koshy, Elementary Number Theory with Applications, Amsterdam: Academic Press, 2007 p. 199.
    • Share:

Embed Interactive Demonstration New!

Just copy and paste this snippet of JavaScript code into your website or blog to put the live Demonstration on your site. More details »

Files require Wolfram CDF Player or Mathematica.

Mathematica »
The #1 tool for creating Demonstrations
and anything technical.
Wolfram|Alpha »
Explore anything with the first
computational knowledge engine.
MathWorld »
The web's most extensive
mathematics resource.
Course Assistant Apps »
An app for every course—
right in the palm of your hand.
Wolfram Blog »
Read our views on math,
science, and technology.
Computable Document Format »
The format that makes Demonstrations
(and any information) easy to share and
interact with.
STEM Initiative »
Programs & resources for
educators, schools & students.
Computerbasedmath.org »
Join the initiative for modernizing
math education.
Step-by-Step Solutions »
Walk through homework problems one step at a time, with hints to help along the way.
Wolfram Problem Generator »
Unlimited random practice problems and answers with built-in step-by-step solutions. Practice online or make a printable study sheet.
Wolfram Language »
Knowledge-based programming for everyone.
Powered by Wolfram Mathematica © 2018 Wolfram Demonstrations Project & Contributors  |  Terms of Use  |  Privacy Policy  |  RSS Give us your feedback
Note: To run this Demonstration you need Mathematica 7+ or the free Mathematica Player 7EX
Download or upgrade to Mathematica Player 7EX
I already have Mathematica Player or Mathematica 7+