Hydrogen and Lithium Orbitals Using a Hartree Eigenvalue Method

This Demonstration shows how to numerically calculate radial 1s and 2s orbitals of hydrogen and lithium. A Hartree eigenvalue method is applied to a 300×300 square matrix with a step size of au. The method uses the fact that the interaction potential between electrons can be simplified significantly for simple atoms. Numerically solving for eigenvalues and eigenfunctions of the Schrödinger equation with such a potential is carried out using an iterative process.


  • [Snapshot]
  • [Snapshot]
  • [Snapshot]


To find the solution of a simplified Schrödinger equation for Li (), we can simply determine numerical eigenvalue solutions to
is defined as:
where the potential is the interaction potential. It can be approximated [1] by
where is the charge, spherically symmetrical and assuming it acts as a Gaussian surface:
Establishing a transformation matrix that would represent the Hamiltonian, using three-point first- and second-order numerical derivatives for the Laplacian and solving iteratively for eigenvalues and eigenvectors generates the approximate solutions for radial density functions.
With "radial orbitals" selected, you can choose to view the calculated normalized radial orbital probability distribution functions for hydrogen or lithium atoms.
With orbital "1s" or "2s" selected, you can also view the calculated numerical value for the associated energies by mousing over the curve.
[1] C. J. Foot, Atomic Physics, New York: Oxford University Press, 2005.
    • Share:

Embed Interactive Demonstration New!

Just copy and paste this snippet of JavaScript code into your website or blog to put the live Demonstration on your site. More details »

Files require Wolfram CDF Player or Mathematica.

Mathematica »
The #1 tool for creating Demonstrations
and anything technical.
Wolfram|Alpha »
Explore anything with the first
computational knowledge engine.
MathWorld »
The web's most extensive
mathematics resource.
Course Assistant Apps »
An app for every course—
right in the palm of your hand.
Wolfram Blog »
Read our views on math,
science, and technology.
Computable Document Format »
The format that makes Demonstrations
(and any information) easy to share and
interact with.
STEM Initiative »
Programs & resources for
educators, schools & students.
Computerbasedmath.org »
Join the initiative for modernizing
math education.
Step-by-Step Solutions »
Walk through homework problems one step at a time, with hints to help along the way.
Wolfram Problem Generator »
Unlimited random practice problems and answers with built-in step-by-step solutions. Practice online or make a printable study sheet.
Wolfram Language »
Knowledge-based programming for everyone.
Powered by Wolfram Mathematica © 2018 Wolfram Demonstrations Project & Contributors  |  Terms of Use  |  Privacy Policy  |  RSS Give us your feedback
Note: To run this Demonstration you need Mathematica 7+ or the free Mathematica Player 7EX
Download or upgrade to Mathematica Player 7EX
I already have Mathematica Player or Mathematica 7+