10182

# Making Patterns with Wang Tiles

Wang tiles (constructed in 1961 by Hao Wang) are a set of 13 squares with the diagonals of each square dividing it into four colored triangles.
Wang packed these squares in the plane in the usual checkerboard pattern, but without rotating or reflecting them, and under the condition that when two squares shared an edge, the colors on opposite sides of the edge had to match. It turned out that these 13 tiles can only tile the plane aperiodically. Wang tiles have applications in areas like DNA computing and textures in computer graphics; they are related to cellular automata and Turing machines.
This Demonstration is a variation on this idea.
The original 13 tiles and all of their rotations and reflections form an ordered list of 60 tiles.
The packing starts with the tile of at the top left. A new set is formed by shifting cyclically by places to the left. The first tile from that matches is added to the right of the last laid tile or at the beginning of the next row if the last row had tiles. This continues until the packing has size .
The number and subset of tiles used are shown below the completed packing.
If "view" is set to "tiles", the packing of the tiles is shown; if "view" is set to "array", each tile of is assigned a different color and there are five times as many tiles.

### DETAILS

Reference
[1] Wikipedia. "Wang Tile." (Oct 12, 2012) en.wikipedia.org/wiki/Wang_tile.

### PERMANENT CITATION

 Share: Embed Interactive Demonstration New! Just copy and paste this snippet of JavaScript code into your website or blog to put the live Demonstration on your site. More details » Download Demonstration as CDF » Download Author Code »(preview ») Files require Wolfram CDF Player or Mathematica.

#### Related Topics

 RELATED RESOURCES
 The #1 tool for creating Demonstrations and anything technical. Explore anything with the first computational knowledge engine. The web's most extensive mathematics resource. An app for every course—right in the palm of your hand. Read our views on math,science, and technology. The format that makes Demonstrations (and any information) easy to share and interact with. Programs & resources for educators, schools & students. Join the initiative for modernizing math education. Walk through homework problems one step at a time, with hints to help along the way. Unlimited random practice problems and answers with built-in Step-by-step solutions. Practice online or make a printable study sheet. Knowledge-based programming for everyone.