# Radial Velocity Curve Fitting

Requires a Wolfram Notebook System

Interact on desktop, mobile and cloud with the free Wolfram CDF Player or other Wolfram Language products.

Requires a Wolfram Notebook System

Edit on desktop, mobile and cloud with any Wolfram Language product.

This Demonstration shows 10 radial velocity data points folded over a varying period. A sinusoidal fit is calculated using a nonlinear regression technique. This is supposed to show the difficulty of finding a single value for a period based on such a small number of data points. The data comes from real observations made by UCL Astronomy students in 2006 and 2010 using a 1.52 m telescope at OHP, France.

Contributed by: Jakub Bochinski (March 2011)

Open content licensed under CC BY-NC-SA

## Snapshots

## Details

Nonlinear curve fitting is based on a mathematical concept of regression analysis, which tries to minimize differences between the fit and nearby data points (residuals). This can be done for any given type of function and a possibly unlimited number of variables. *Mathematica *can compute nonlinear regression to fit a model sinusoidal function

to a dataset, taking into account uncertainties associated with each data point separately. In the equation, is a radial velocity, is a Julian date (or phase), and , , , are adjustable parameters. It is clear that this function can be stretched and shifted along either axis, but not tilted sideways.

## Permanent Citation