10178

# The Four-Vertex Theorem

This shows the result of the four-vertex theorem: A simple closed curve has at least four vertices. You can transform the closed curve by dragging the locator. If the caustic extends beyond the window, you can reduce its size.
Let be a smooth plane curve parametrized by arc length , that is, for all . The number is called the curvature of at . A vertex of is a point where . A vertex corresponds to a cusp of the caustic generated by the curve. The theorem implies that the caustic of a general simple closed curce has at least four cusps (for a caustic, see Caustics on Spline Curves).

### DETAILS

Manfredo P. do Carmo, Differential Geometry of Curves and Surfaces, Prentice Hall, 1976.
Ian R. Porteous, Geometric Differentiation: For the Intelligence of Curves and Surfaces, Cambridge University Press, 1994.

### PERMANENT CITATION

 Share: Embed Interactive Demonstration New! Just copy and paste this snippet of JavaScript code into your website or blog to put the live Demonstration on your site. More details » Download Demonstration as CDF » Download Author Code »(preview ») Files require Wolfram CDF Player or Mathematica.

#### Related Topics

 RELATED RESOURCES
 The #1 tool for creating Demonstrations and anything technical. Explore anything with the first computational knowledge engine. The web's most extensive mathematics resource. An app for every course—right in the palm of your hand. Read our views on math,science, and technology. The format that makes Demonstrations (and any information) easy to share and interact with. Programs & resources for educators, schools & students. Join the initiative for modernizing math education. Walk through homework problems one step at a time, with hints to help along the way. Unlimited random practice problems and answers with built-in Step-by-step solutions. Practice online or make a printable study sheet. Knowledge-based programming for everyone.