10182

# The Malfatti Problem

In 1803 Malfatti proposed the following problem: given an arbitrary triangle, find three non-intersecting circles inside it so that the sum of the areas is maximized. He wrongly assumed that it was equivalent to the problem of finding three circles (since then known as Malfatti circles) each of which is tangent to the other two and to two sides of the triangle. Actually, the problem of obtaining Malfatti circles was formulated and solved by Chokuyen Ajima (1732–1798) as a purely geometric problem. It was not until 1929 that Lob and Richmond noted that the Malfatti circles were not always the solution to the Malfatti problem. In 1967, Goldberg proved that the Malfatti circles in fact never solve the Malfatti problem! Malfatti's problem was solved by Zalgaller and Los only in 1991. This Demonstration shows the Malfatti circles and the Zalgaller–Los solution, which always includes the incircle of the triangle.

### DETAILS

The keyword in Malfatti's assumption is "inside". Without it, the solution leads to a nasty non-linear system of equations leading to eight solutions (or more if we allow circles containing others), only one of which is the set of Malfatti circles.
References:
Malfatti Problem on cut-the-knot.org.
H. Dörrie, 100 Great Problems of Elementary Mathematics, New York: Dover Publications, 1965.

### PERMANENT CITATION

 Share: Embed Interactive Demonstration New! Just copy and paste this snippet of JavaScript code into your website or blog to put the live Demonstration on your site. More details » Download Demonstration as CDF » Download Author Code »(preview ») Files require Wolfram CDF Player or Mathematica.

#### Related Curriculum Standards

US Common Core State Standards, Mathematics

 RELATED RESOURCES
 The #1 tool for creating Demonstrations and anything technical. Explore anything with the first computational knowledge engine. The web's most extensive mathematics resource. An app for every course—right in the palm of your hand. Read our views on math,science, and technology. The format that makes Demonstrations (and any information) easy to share and interact with. Programs & resources for educators, schools & students. Join the initiative for modernizing math education. Walk through homework problems one step at a time, with hints to help along the way. Unlimited random practice problems and answers with built-in Step-by-step solutions. Practice online or make a printable study sheet. Knowledge-based programming for everyone.