The Plemelj Construction of a Triangle: 5

This Demonstration constructs a triangle given the length of its base, the length of the altitude from to and the difference between the angles at and .
Step 1: Draw a line segment of length and let its midpoint be . Draw a line segment of length perpendicular to . Through , draw a straight line parallel to .
Step 2: Draw a circle so that the segment is viewed at angle as a chord of the circle, which implies the central angle .
Step 3: Let be the intersection of the ray and the circle .
Step 4: The point is the intersection of and .
Step 5: The triangle meets the stated conditions.
This is the most elegant construction. It is based on the fact that the exterior angle of the triangle at is and the interior angle at is , so the angle at is .


  • [Snapshot]
  • [Snapshot]
  • [Snapshot]


For the history of this problem, references and a photograph of Plemelj's first solution, see The Plemelj Construction of a Triangle: 1.
    • Share:

Embed Interactive Demonstration New!

Just copy and paste this snippet of JavaScript code into your website or blog to put the live Demonstration on your site. More details »

Files require Wolfram CDF Player or Mathematica.