Biggest Little Polyhedron

Requires a Wolfram Notebook System
Interact on desktop, mobile and cloud with the free Wolfram Player or other Wolfram Language products.
A polyhedron has vertices. The greatest distance between vertices is 1. What is the maximum volume of the polyhedron? This is known as the biggest little polyhedron problem.
Contributed by: Ed Pegg Jr (November 2015)
Open content licensed under CC BY-NC-SA
Snapshots
Details
The unit-rod polyhedron shows a rod between all vertex pairs a unit distance apart.
The unit-star picture builds polygons from half-unit rods meeting at a vertex.
The unit-length graph shows how vertices a unit distance apart are connected.
The planar vertex map puts the vertices on a sphere, then unrolls the sphere into a planar form.
In the supported triangles image, all vertices of a blue triangle (with brown number) are at distance 1 from an opposing vertex with a matching green number.
The Initialization section contains various programs that may be able to improve some of the solutions.
References
[1] B. Kind and P. Kleinschmidt, "On the Maximal Volume of Convex Bodies with Few Vertices," Journal of Combinatorial Theory, Series A, 21(1) 1976 pp. 124–128. doi:10.1016/0097-3165(76)90056-X.
[2] A. Klein and M. Wessler, "The Largest Small -dimensional Polytope with
Vertices," Journal of Combinatorial Theory, Series A, 102(2), 2003 pp. 401–409. doi:10.1016/S0097-3165(03)00054-2.
[3] A. Klein and M. Wessler, "A Correction to 'The Largest Small -dimensional Polytope with
Vertices,'" Journal of Combinatorial Theory, Series A, 112(1), 2005 pp. 173–174. doi:10.1016/j.jcta.2005.06.001.
[4] E. Pegg Jr. "Biggest Little Polyhedra" from Wolfram Community—A Wolfram Web Resource. (Oct 28, 2015) community.wolfram.com/groups/-/m/t/463699.
[5] E. Pegg Jr. "Biggest Little Polyhedron—New Solutions in Combinatorial Geometry" from Wolfram Blog—A Wolfram Web Resource. (May 20, 2015) blog.wolfram.com/2015/05/20/biggest-little-polyhedronnew-solutions-in-combinatorial-geometry.
Permanent Citation