# Plotting Rational Functions of a Complex Variable

Requires a Wolfram Notebook System

Interact on desktop, mobile and cloud with the free Wolfram Player or other Wolfram Language products.

This Demonstration shows a complex rational function as a contour plot superposed on a parametric plot, in which colors depend on the quadrant in which falls. A rational function is the quotient of two polynomials, and . This Demonstration uses polynomials of the form and , where the coefficients and are complex numbers. Suppose that and have no common roots. Then the zeros of are the zeros of , and the zeros of are the poles of . Zeros are shown in white in the centers of the black patches, and poles are shown as black points.

Contributed by: Izidor Hafner (March 2016)

Open content licensed under CC BY-NC-SA

## Snapshots

## Details

detailSectionParagraph## Permanent Citation

"Plotting Rational Functions of a Complex Variable"

http://demonstrations.wolfram.com/PlottingRationalFunctionsOfAComplexVariable/

Wolfram Demonstrations Project

Published: March 30 2016