Sparse Rulers

Initializing live version
Download to Desktop

Requires a Wolfram Notebook System

Interact on desktop, mobile and cloud with the free Wolfram Player or other Wolfram Language products.

A sparse ruler is a rod of integer length with a minimal number of marks so that all distances 1 to can be measured. Many lengths, such as 36, have unique rulers with a twin by subtracting marks from , as seen here:



This Demonstration has many but not all sparse rulers. Up to length 198, there are sparse rulers, with of them for length 59 alone. Many of the longest known sparse rulers for a particular number of marks are Wichmann rulers. A Wichmann ruler generator is given in the Initialization.

In a Golomb ruler, distances can be missing but none can be repeated.

In a sparse ruler, distances can be repeated but none can be missing.

In a difference set, modular distances cannot be missing or repeated.

For a minimal sparse ruler of length with marks, let the excess be . The excess is always 0 or 1.

The "show ruler" box is a toggle for "show grid" of excess to length 2103.


Contributed by: Ed Pegg Jr (June 2019)
Open content licensed under CC BY-NC-SA


Snapshot 1: a simple case with extra marks at 1, 2 and 4 on a ruler of length 7; all the lengths from 1 to 7 can be measured as , , , , , and .


Feedback (field required)
Email (field required) Name
Occupation Organization
Note: Your message & contact information may be shared with the author of any specific Demonstration for which you give feedback.