A Concurrency Generated by Lines through the Orthocenter and Circles about a Triangle's Sides

Let ABC be a triangle, P be an interior point, and H be the orthocenter. Let A', B', and C' be the internal intersections of AP, BP, and CP with the circles whose diameters are BC, AC, and AB, respectively. Let A'H, B'H, and C'H intersect the circles whose diameters are BC, AC, and AB again at A'', B'', and C''. Then AA'', BB'', and CC'' are concurrent.

THINGS TO TRY

SNAPSHOTS

  • [Snapshot]
  • [Snapshot]
  • [Snapshot]

RELATED LINKS

    • Share:

Embed Interactive Demonstration New!

Just copy and paste this snippet of JavaScript code into your website or blog to put the live Demonstration on your site. More details »

Files require Wolfram CDF Player or Mathematica.