A Semi-Discrete Analog to The Mean Value Theorem

The mean value theorem states that if a function is differentiable in an open interval and continuous in its closure , then there exists a point such that . This theorem's semi-discrete analog suggests that if a function is tendable in , continuous in , and also that , then for each there exists a point , such that , where is the function's tendency, and "tendability of a function" means that the tendency operator can be applied to the function. The definition of the tendency operator is given in the Demonstration "Detachment and Tendency of a Single Variable Function". A comparison between the mean value theorem and its semi-discrete analog is found in the details. When compared to the original theorem, this version depicts a trade-off between the functions for which the theorem's correctness holds and the kind of information that the theorem gives. This version is called semi-discrete due to the decisive role of the function, whose image is finite. In this Demonstration, you can vary the parameters , , and from the theorem's statement to better understand the theorem. The highlighted yellow points are those whose existence is assured by the theorem.



  • [Snapshot]
  • [Snapshot]
  • [Snapshot]


Snapshot 1: setting , , yields only one highlighted point; here the one-sided detachments are omitted
Snapshot 2: setting , , yields two highlighted points; here the one-sided detachments, from which the tendency is calculated, are shown
Snapshot 3: setting , , yields one highlighted point; here the one-sided detachments, from which the tendency is calculated, are shown; although there are two points in the chosen interval whose image is , only one of them is highlighted—the tendency at the other point is zero
A short and to the point comparison between the mean value theorem and its semi-discrete analog is depicted in this link.
    • Share:

Embed Interactive Demonstration New!

Just copy and paste this snippet of JavaScript code into your website or blog to put the live Demonstration on your site. More details »

Files require Wolfram CDF Player or Mathematica.

Mathematica »
The #1 tool for creating Demonstrations
and anything technical.
Wolfram|Alpha »
Explore anything with the first
computational knowledge engine.
MathWorld »
The web's most extensive
mathematics resource.
Course Assistant Apps »
An app for every course—
right in the palm of your hand.
Wolfram Blog »
Read our views on math,
science, and technology.
Computable Document Format »
The format that makes Demonstrations
(and any information) easy to share and
interact with.
STEM Initiative »
Programs & resources for
educators, schools & students.
Computerbasedmath.org »
Join the initiative for modernizing
math education.
Step-by-Step Solutions »
Walk through homework problems one step at a time, with hints to help along the way.
Wolfram Problem Generator »
Unlimited random practice problems and answers with built-in step-by-step solutions. Practice online or make a printable study sheet.
Wolfram Language »
Knowledge-based programming for everyone.
Powered by Wolfram Mathematica © 2018 Wolfram Demonstrations Project & Contributors  |  Terms of Use  |  Privacy Policy  |  RSS Give us your feedback
Note: To run this Demonstration you need Mathematica 7+ or the free Mathematica Player 7EX
Download or upgrade to Mathematica Player 7EX
I already have Mathematica Player or Mathematica 7+