Chaos in the Shift Map

The shift map is a standard example of the sensitive dependence on initial conditions that is at the core of traditional chaos theory. This Demonstration illustrates this basic phenomenon, and shows that there is often more going on in the shift map.


  • [Snapshot]
  • [Snapshot]
  • [Snapshot]
  • [Snapshot]
  • [Snapshot]


At each step, a number is multiplied by the specified multiplier, but only the fractional part is kept. The main array shows the base-2 digit sequences of successive numbers generated in this way.
One starts with two numbers that differ by a "perturbation" that affects only high-order digits. What the Demonstration shows is that often such a perturbation will grow, as its digits are shifted into more significant positions.
For multiplier 2, all the shift map does is to shift digits to the left. There is apparent randomness in the values shown on the left even in this case, so long as the digit sequence of the initial conditions is somehow seemingly random, say because it comes from a number like 1/π.
If machine arithmetic is used (as in most earlier numerical work), the phenomenon becomes more confused, since after a limited time one "runs out of bits", and starts generating 0s.
With multipliers other than 2, another phenomenon appears: even with very simple initial conditions, apparent randomness is generated, quite independent of "excavating the bits" from the initial conditions. In most practical situations, this is probably a more important source of randomness than the specific one associated with sensitive dependence on initial conditions.
    • Share:

Embed Interactive Demonstration New!

Just copy and paste this snippet of JavaScript code into your website or blog to put the live Demonstration on your site. More details »

Files require Wolfram CDF Player or Mathematica.

Mathematica »
The #1 tool for creating Demonstrations
and anything technical.
Wolfram|Alpha »
Explore anything with the first
computational knowledge engine.
MathWorld »
The web's most extensive
mathematics resource.
Course Assistant Apps »
An app for every course—
right in the palm of your hand.
Wolfram Blog »
Read our views on math,
science, and technology.
Computable Document Format »
The format that makes Demonstrations
(and any information) easy to share and
interact with.
STEM Initiative »
Programs & resources for
educators, schools & students.
Computerbasedmath.org »
Join the initiative for modernizing
math education.
Step-by-Step Solutions »
Walk through homework problems one step at a time, with hints to help along the way.
Wolfram Problem Generator »
Unlimited random practice problems and answers with built-in step-by-step solutions. Practice online or make a printable study sheet.
Wolfram Language »
Knowledge-based programming for everyone.
Powered by Wolfram Mathematica © 2018 Wolfram Demonstrations Project & Contributors  |  Terms of Use  |  Privacy Policy  |  RSS Give us your feedback
Note: To run this Demonstration you need Mathematica 7+ or the free Mathematica Player 7EX
Download or upgrade to Mathematica Player 7EX
I already have Mathematica Player or Mathematica 7+