Cylindrical Cavity Resonator

An electromagnetic wave can be confined inside a space surrounded by conducting walls, which is called a cavity. Consider a cylindrical cavity with inner radius and height . There are two possible wave modes: transverse electric (TE) and transverse magnetic (TM). For appropriate field variables for those modes, separation of variables leads to harmonic solutions to the wave equation (from Maxwell's equations) of the form , where is a Bessel function of the first kind. The constant is an integer . Noting that is an eigenvalue of the Helmholtz equation and taking into account the boundary condition for the trigonometric function , introduce the additional integer indices: , (TE), and (TM).
The possible electromagnetic resonances can be classified as or , which completely determine the electromagnetic fields and in the cavity. Resonance states show localization of energy density in the cylindrical cavity. The two contributions to energy density, electric and magnetic , can be identified, with the total energy density given by .
This Demonstration shows the three-dimensional distributions of the energy densities and in normalized bases for the and modes within the cylinder. The distributions of and on the two planes and are shown in red and blue, respectively. Considerable time is necessary to refresh the image, even with the image quality decreased.


  • [Snapshot]
  • [Snapshot]
  • [Snapshot]


[1] J. D. Jackson, Classical Electrodynamics, 3rd ed., New York: John Wiley and Sons, 1999.
[2] W. K. H. Panofsky and M. Phillips, Classical Electricity and Magnetism, 2nd ed., New York: Dover Publications, 2005.
    • Share:

Embed Interactive Demonstration New!

Just copy and paste this snippet of JavaScript code into your website or blog to put the live Demonstration on your site. More details »

Files require Wolfram CDF Player or Mathematica.

Mathematica »
The #1 tool for creating Demonstrations
and anything technical.
Wolfram|Alpha »
Explore anything with the first
computational knowledge engine.
MathWorld »
The web's most extensive
mathematics resource.
Course Assistant Apps »
An app for every course—
right in the palm of your hand.
Wolfram Blog »
Read our views on math,
science, and technology.
Computable Document Format »
The format that makes Demonstrations
(and any information) easy to share and
interact with.
STEM Initiative »
Programs & resources for
educators, schools & students.
Computerbasedmath.org »
Join the initiative for modernizing
math education.
Step-by-Step Solutions »
Walk through homework problems one step at a time, with hints to help along the way.
Wolfram Problem Generator »
Unlimited random practice problems and answers with built-in step-by-step solutions. Practice online or make a printable study sheet.
Wolfram Language »
Knowledge-based programming for everyone.
Powered by Wolfram Mathematica © 2018 Wolfram Demonstrations Project & Contributors  |  Terms of Use  |  Privacy Policy  |  RSS Give us your feedback
Note: To run this Demonstration you need Mathematica 7+ or the free Mathematica Player 7EX
Download or upgrade to Mathematica Player 7EX
I already have Mathematica Player or Mathematica 7+