9804

Expanded Fermi Solution to Retrodict the Initial from the Final Number in a Stochastic Process

This Demonstration employs the "expanded Fermi solution" to estimate the most probable initial number of ingested microorganisms, pathogens, or probiotics that will result in a given number of survivors in the gut. The method is based on entering the ranges of the probabilities that they will survive the different stages in the digestive tract. The method can be extended to include washing, cooking, cooling, or freezing prior to ingestion. It can also be used to estimate the most probable number of dissatisfied customers given the number of received complaints, the number of defective units, and so on.

SNAPSHOTS

  • [Snapshot]
  • [Snapshot]
  • [Snapshot]
  • [Snapshot]

DETAILS

Snapshot 1: estimate of the most probable number of ingested pathogenic bacterial cells from which one will survive the passage to the gut
Snapshot 2: estimate of the most probable number of probiotic bacterial cells from which to will remain viable upon reaching the gut
Snapshot 3: estimate of the most probable number of dissatisfied customers given that five written complaints have been received
Snapshot 4: estimate of the most probable number of spores of a probiotic bacterium in a heat-processed food germinating in the gut
This Demonstration generates estimates of the most probable initial number of cells, customers, or units in general within the range minimum to maximum set by the user with sliders and a drop-down menu. The ranges of the probability factors ( from 1 to 6) are specified by minimum and maximum and are also set by sliders. Monte Carlo simulations to determine the initial number can be done with or without a seed. Check the "seed repeatable random numbers" box to generate a repeatable random sequence from the seed selected using the "seed value" slider. The number of repeated trials is entered using the "random trials to generate" slider. The program generates a new dataset whenever the value of any control other than the clear button is altered. For a new random dataset at the current control settings, click "clear" followed by "generate". For scenarios involving fewer than all six factors, set the unused factor's minimum and maximum values to 1. The panel shows the program controls at their current settings, a histogram of the estimates computed in the repeated trials, and the lognormal distribution having the same logarithmic mean and standard deviation as the generated estimates shown as a solid blue curve. The plot title text includes the analytic solution "best estimate" and the one derived from the lognormal distribution's mode. Estimates for and outside their sliders' allowed range of 1 to 1000 can be obtained by setting the " multiplier" drop-down menu to the appropriate factor. Notice that if all seven factors' (i.e., and the six 's) minimum and maximum values are the same, the program will render the conventional Fermi solution plotted as a spike. Also, if all but one of the seven factors' minimum and maximum values are the same, then the program will generate random estimates with a uniform distribution. In that case, although the program still generates a corresponding lognormal distribution curve, it may no longer be representative.
The difference between this Demonstration and the Demonstration Expanded Fermi Solution for Risk Assessment is that the initial number estimates are calculated by dividing the entered 's by the product of the corresponding six 's.
References:
H. C. von Baeyer, The Fermi Solution: Reflections on the Meaning of Physics, London: Penguin, 1993.
M. Peleg, M. D. Normand, J. Horowitz, and M. G. Corradini, "An Expanded Fermi Solution for Microbial Risk Assessment," International Journal of Food Microbiology, 113(1), 2007 pp. 92–101.
    • Share:

Embed Interactive Demonstration New!

Just copy and paste this snippet of JavaScript code into your website or blog to put the live Demonstration on your site. More details »

Files require Wolfram CDF Player or Mathematica.









 
RELATED RESOURCES
Mathematica »
The #1 tool for creating Demonstrations
and anything technical.
Wolfram|Alpha »
Explore anything with the first
computational knowledge engine.
MathWorld »
The web's most extensive
mathematics resource.
Course Assistant Apps »
An app for every course—
right in the palm of your hand.
Wolfram Blog »
Read our views on math,
science, and technology.
Computable Document Format »
The format that makes Demonstrations
(and any information) easy to share and
interact with.
STEM Initiative »
Programs & resources for
educators, schools & students.
Computerbasedmath.org »
Join the initiative for modernizing
math education.
Step-by-step Solutions »
Walk through homework problems one step at a time, with hints to help along the way.
Wolfram Problem Generator »
Unlimited random practice problems and answers with built-in Step-by-step solutions. Practice online or make a printable study sheet.
Wolfram Language »
Knowledge-based programming for everyone.
Powered by Wolfram Mathematica © 2014 Wolfram Demonstrations Project & Contributors  |  Terms of Use  |  Privacy Policy  |  RSS Give us your feedback
Note: To run this Demonstration you need Mathematica 7+ or the free Mathematica Player 7EX
Download or upgrade to Mathematica Player 7EX
I already have Mathematica Player or Mathematica 7+