Intuition for the Fundamental Theorem of Calculus

The fundamental theorem of calculus states that for a continuous function on an interval , the integral is both continuous and differentiable on . More specifically, it states that for all in This Demonstration helps to provide the intuition behind this idea.


  • [Snapshot]
  • [Snapshot]
  • [Snapshot]


You may recall that the derivative of a function is defined to be . For arbitrarily small values of , this says , or (A)
We use this idea to help develop the fundamental theorem of calculus. Define to be the area function, that is, . Then the Demonstration shows that and so by (A), (since the approximation is in fact an equality as we take the limit as ). Thus is the derivative of the area function, that is, as desired.
    • Share:

Embed Interactive Demonstration New!

Just copy and paste this snippet of JavaScript code into your website or blog to put the live Demonstration on your site. More details »

Files require Wolfram CDF Player or Mathematica.

Mathematica »
The #1 tool for creating Demonstrations
and anything technical.
Wolfram|Alpha »
Explore anything with the first
computational knowledge engine.
MathWorld »
The web's most extensive
mathematics resource.
Course Assistant Apps »
An app for every course—
right in the palm of your hand.
Wolfram Blog »
Read our views on math,
science, and technology.
Computable Document Format »
The format that makes Demonstrations
(and any information) easy to share and
interact with.
STEM Initiative »
Programs & resources for
educators, schools & students.
Computerbasedmath.org »
Join the initiative for modernizing
math education.
Step-by-Step Solutions »
Walk through homework problems one step at a time, with hints to help along the way.
Wolfram Problem Generator »
Unlimited random practice problems and answers with built-in step-by-step solutions. Practice online or make a printable study sheet.
Wolfram Language »
Knowledge-based programming for everyone.
Powered by Wolfram Mathematica © 2017 Wolfram Demonstrations Project & Contributors  |  Terms of Use  |  Privacy Policy  |  RSS Give us your feedback
Note: To run this Demonstration you need Mathematica 7+ or the free Mathematica Player 7EX
Download or upgrade to Mathematica Player 7EX
I already have Mathematica Player or Mathematica 7+