10182

# Inversive Geometry IV: Inverting a Point with a Compass in Three Steps

Given a point Z and an inversion circle with center at point Q and radius , consider the following construction to obtain the inverse Z' of Z in . Draw the circle centered at Z passing through Q; let it intersect at points A and B. Draw two circles and centered at A and B both passing through Q. Their second point of intersection is the inverse of Z in . We justify this by the following reasoning: if we invert and in we obtain (red dotted) lines passing through Z; these lines intersect at and Z, hence their inverses must intersect at the inverses of and Z, namely Q and Z'. This Demonstration lets you drag the point Z (red); the construction works for all points Z at a distance from Q greater than .

### PERMANENT CITATION

 Share: Embed Interactive Demonstration New! Just copy and paste this snippet of JavaScript code into your website or blog to put the live Demonstration on your site. More details » Download Demonstration as CDF » Download Author Code »(preview ») Files require Wolfram CDF Player or Mathematica.

#### Related Topics

 RELATED RESOURCES
 The #1 tool for creating Demonstrations and anything technical. Explore anything with the first computational knowledge engine. The web's most extensive mathematics resource. An app for every course—right in the palm of your hand. Read our views on math,science, and technology. The format that makes Demonstrations (and any information) easy to share and interact with. Programs & resources for educators, schools & students. Join the initiative for modernizing math education. Walk through homework problems one step at a time, with hints to help along the way. Unlimited random practice problems and answers with built-in Step-by-step solutions. Practice online or make a printable study sheet. Knowledge-based programming for everyone.