Orthogonal Projections of the Edges of a Cube

This Demonstration shows that the sum of the squares of the lengths of the orthogonal projections of the edges of a cube with edge length to a plane equals .
Let the bottom corner of the cube (a trihedron) have bottom vertex and three sides , , of length . Let be perpendicular to with . Let the angles of to the three sides be , , . Take the trihedron as the axes of a coordinate system with . Then , , , and so [1, p.27].
The length of the projection of to is , and similarly for and . So the lengths of the projections of the three edges are , , . Now
The 12 edges of the cube are parallel in sets of four, so the sum of the squares of all the edge lengths equals .


  • [Snapshot]
  • [Snapshot]
  • [Snapshot]


This problem was posed in [1, pp. 20, 27, 28].
[1] V. V. Prasolov and I. F. Sharygin, Problems in Stereometry (in Russian), Moscow: Nauka, 1989.
    • Share:

Embed Interactive Demonstration New!

Just copy and paste this snippet of JavaScript code into your website or blog to put the live Demonstration on your site. More details »

Files require Wolfram CDF Player or Mathematica.

Mathematica »
The #1 tool for creating Demonstrations
and anything technical.
Wolfram|Alpha »
Explore anything with the first
computational knowledge engine.
MathWorld »
The web's most extensive
mathematics resource.
Course Assistant Apps »
An app for every course—
right in the palm of your hand.
Wolfram Blog »
Read our views on math,
science, and technology.
Computable Document Format »
The format that makes Demonstrations
(and any information) easy to share and
interact with.
STEM Initiative »
Programs & resources for
educators, schools & students.
Computerbasedmath.org »
Join the initiative for modernizing
math education.
Step-by-Step Solutions »
Walk through homework problems one step at a time, with hints to help along the way.
Wolfram Problem Generator »
Unlimited random practice problems and answers with built-in step-by-step solutions. Practice online or make a printable study sheet.
Wolfram Language »
Knowledge-based programming for everyone.
Powered by Wolfram Mathematica © 2018 Wolfram Demonstrations Project & Contributors  |  Terms of Use  |  Privacy Policy  |  RSS Give us your feedback
Note: To run this Demonstration you need Mathematica 7+ or the free Mathematica Player 7EX
Download or upgrade to Mathematica Player 7EX
I already have Mathematica Player or Mathematica 7+